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XIH. Perspective

"\Tature is nowhere accustomed more openly to display her
1 \ secret mysteries than in cases where she shows traces of
her workings apart from the beaten path; nor is there any better
way to advance the proper practice of medicine than to give our
minds to the discovery of the usual law of Nature by careful
investigation of rarer forms of disease. For it has been found in
almost all things, that what they contain of useful or applicable
nature is hardly perceived unless we are deprived of them, or
they become deranged in some way.

William Harvey (1657) (1)

• I. Introduction
1 I 'HYROID follicular cell tumors present a unique model
jL for the study of generic and environmental factors pre-

King Faisal Specialist Hospital and

Address requests for reprints to: Nadir R. Farid, MBBS, FRCP,
FRCP(C), FACP, Executive Director, Medical Research Institute, King
Fahad National Guard Hospital, PO Box 22490, Riyadh 11426, Kingdom
of Saudi Arabia.

•Supported by Grants 90-0014, 90-0015, and 90-0016 from King
Faisal Specialist Hospital and Research Centre; Grant AT-13-2 from
King Abdul Aziz City for Science and Technology (KACST); the Riyadh
Chamber of Commerce; and Bristol-Myers-Squibb (Canada').

QC
to
stc
p°
th.
fO!

an
pr
po
S12
lat
tie
fa
th.
in
in!
a
rtu
of
tui
ah

disposing to benign nodule formation, well differentiated
malignant tumors, and anaplastic cancer. Although these
histological changes are' not necessarily sequential, there fc
evidence that gradation^ of proliferative and differentiative
potential exists among cells in each thyroid follicle. Condj.
tions conducive to rapid growth ensure that the progeny of
cells with high growth potential establish local dominance
a prelude to nodule formation (2). There is also evidence that
well differentiated carcinoma may progress to an anaplasty
form (3). It is only speculation that benign nodules may
develop into well differentiated carcinoma.

Cancer is a complex, multistep process (4). Based on the
measurements of age-dependent tumor incidence, it wu
inferred mathematically that a succession of five or six in- m;

dependent steps are involved, each of which is rate limiting esi

(5). This predicted sequence of events has been shown to tn'
apply to colorectal carcinoma (6-12). In the intact host, each mi

step would represent a physiological barrier to be breached *'
for a cell to progress to malignant transformation. The fact °f'
that multiple barriers must be overcome ensures that maJig- pr.
nancy is a rare event (13). ge

A consideration of thyroid carcinogenesis raises seven! re"
issues: What are the cellular events for the-transformation of.
normal thyroid epithelial cells to malignant ones? Are the cei
events that direct transformation of normal thyroid cells to fu;
follicular carcinoma and papillary carcinoma separate and ttu
independent? How can one account for tumors of mixed su
histology? How does iodide deficiency enhance the preva- in<
lence of follicular carcinoma? Are additional cellular events fu:
necessary for the metastatic potential of tumors or is this foi
inherent in those changes resulting in follicular or papillary no
histology? Similarly, are additional factors involved in the be
progression of well differentiated carcinoma to anaplastk tio
histology? Is there evidence that benign nodular proliferation lin
is an antecedent to malignant transformation of thyroid celb ret
as has been observed in colorectal cancer?

In this review, an attempt will be made to summarize what hu
is known at the molecular level about thyroid cell growth en
and the factors involved in the transformation of thyrcmLc: rec
cells. The picture is incomplete since what is known abouKcr to
thyroid tumors is not as advanced as for other rumor systems.1}-} est

' in (D
II. Thyroid Cell Growth , ^ °"

eff
The' thyroid follicular cell is a highly differentiated cell th}

having evolved a highly efficient system for concentrating
iodide for the synthesis, storage, and release of a reservoir of
thyroid hormones, under basal conditions as well as condi-
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tions of increased need. Thyroid'cells are programmed (14)
to aggregate into follicles (15) with a central space for the
storage of thyroglobulin. This organization necessitates the
polarization of the thyroid cell: the basal pole specializes in
the import of iodide, which is then transported to the apex
for iodin'ation of thyroglobulin (16).

Unlike many other highly specialized cells, thyroid cells
are not irreversibly terminally differentiated. When they
proliferate in response to certain growth signals they tem-
porarily lose the ability to concentrate iodide and to synthe-
size thyroglobulin (see Ref. 17 for review). Certain unregu-
lated growth signals associated with malignant transforma-
tion may contribute to the loss of differentiated thyroid
function. The thyroid cell turns over, on average, no more
than five times through adulthood (18). Turnover increases
in early infancy and adolescence (18, 19). Because of the
inhomogeneity of the growth potential of follicular cells (2),
a fraction of these follicular cells in adults would likely
turnover much more than five times. It is assumed that cycles
of cell division may be more frequent in benign or malignant
tumors (2) although evidence from human tumors does not
always support this notion (20).

An understanding of the factors involved in normal hu-
man thyroid cell growth, differentiation, and signaling is an
essential prelude to understanding aberrations related to
thyroid cell transformation. Unfortunately, the picture is
incomplete due to the variability among species of factors
that sustain thyroid proliferation, the pathways used, and

•cytokines elaborated. Data from animal thyroid tissue in
primary culture or from thyroid rat cell lines may not be
generalizable to the human thyroid (21-23) (see Ref, 16 for
review).

TSH induces human thyroid cell growth at a higher con-
centration than is necessary for induction of differentiated
function (24, 25). TSH mediates its growth stimulation
through the adenyl cyclase/cAMP pathway. Insulin or in-
sulin-like growth factor I (IGF-I) synergizes with TSH to
induce thyroid cell growth while maintaining specialized cell
function (25,26). Insulin and IGF-I are thus either permissive
for other factors without being mitogenic themselves or-do
not inhibit differentiated function (25, 26). Indeed, TSH has
been shown to enhance insulin-induced autophosphoryla-
tion of both insulin and IGF-I receptors in rat thyroid ceil
lines as well as the phosphorylation of the immediate insulin
receptor 185 kilodalton (kDa) endogenous substrate (27, 28).

Epidermal growth factor (EGF), on the other hand, induces
human thyroid cell growth at the expense of loss in differ-
entiated function (29-31). In some species, TSH induces EGF
receptors on thyroid cells, making these cells more responsive
to EGF (32,33). Many EGF effects are reproduced by phorbol
esters, used as probes for protein kinase C and diacylglycero!
(DAG) (34-36). The effects of TSH, EGF, and phorbol esters
on differentiation are largely independent of their mitogenic
effects (17). Fibroblast growth factor (FGF) is also a potent
thyroid cell mitogen (37).

Growth factors elaborated by thyrocytes have been studied
in different species at different times. Human and sheep
thyroids produce IGF-I (35, 38), FRTL5 cells produce IGF-II

(39), and porcine cells produce FGFs (40); both IGF-I and
FGF act upon thyrocytes in an autocrine fashion.

Likewise, cytokines traditionally thought to be synthesized
and secreted by immunocytes are synthesized, secreted, and
act upon thyrocytes. These cytokines include interleukin-1
(IL-1), transforming growth factor 0 (TGF/S), and IL-8. They
either have growth-promoting effects as in physiological
concentrations of IL-1 and IL-8 (41-43) or inhibit growth
and in some instances differentiated function, e.g. TGF£,
interferon-7, and IL-1 (44-47). Indeed, TGF/8 may have a
physiological role in negatively regulating thyroid follicular
cell function. IL-1 has been shown paradoxically to limit the
growth of human thyroid tumor cell lines (48). Several of
these cytokines elaborated by thyrocytes synergize with each
other and with growth factors (42, 45) in their effect on
thyroid cell growth and differentiated function.

Many of the factors elaborated by the thyroid, e.g. IGF-I
(38) and FGF (40) also act in vivo on endothelial cells and
fibroblasts to induce neurovascularization (49) and to en-
hance adhesion molecule synthesis to support thyroid
growth.

At least three distinct pathways for signal transduction
have been defined in the thyroid: 1) receptor/adenylate
cyclase/protein kinase A system; 2) receptor/tyrosine kinase
pathway; and 3) receptor/phospholipase C cascade (50, 51).
TSH activates both the adenylate cyclase and phospholipase
C pathways. Activation of phospholipase C results in the
formation of DAG and inositol-l,4,5-triphosphate (IP3) (52,
53). DAG activates protein kinase C and TP3 increases inrra-
cellular calcium concentrations. The concentration of TSH
necessary to activate phospholipase C is much higher and its
action slower than that necessary for adenylate cyclase acti-
vation. Apparently cAMP induces DAG synthetase in the
thyroid, thus providing substrate for protein kinase C, allow-
ing the activation of this pathway at physiological TSH
concentrations (54).

EGF, insulin, and IGF-I act through tyrosine protein kinase
receptors (17). EGF also mobilizes calcium (Ca**) from intra-
cellular stores as well as from extracellular sources through
the generation of IP3, at least in some species (17, 55, 56),
and perhaps through other mechanisms.

A role for iodide in the regulation of thyroid cell growth
has been proposed. Apparently through oxidized interme-
diaries, iodide may decrease both adenylate cyclase and Ca"
levels in thyroid cells, thus reducing their sensitivity to TSH
signaling (57-61). Iodide deficiency, conversely, enhances
the effects of TSH on the thyroid.

TSH induces or increases phosphorylation of at least 11
proteins. EGF induces the phosphorylation of five proteins
including mitogen-activated protein kinase, which in rum
phosphorylates ribosomal S6 kinase (pp90nk) (62-64). Phor-
bol esters induce the phosphorylation of 19 proteins. No
overlap exists between the proteins phosphorylated through
the two pathways (TSH and EGF/phorbol esters) (62).

The divergence of the two pathways, TSH/cAMP and that
of the EGF/kinase C, also extends to newly synthesized
proteins. Only one of the 26 proteins involved, proliferating
cell nuclear antigen, is synthesized in response to TSH, EGF,
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and phorbol esters. There are, however, differences in the
kinetics of proliferating cell nuclear antigen synthesis—early
through the TSH/cAMP pathway, and delayed through the
other two pathways (63).

TSH induces rapid but short-lived increases in c-myc tran-
scripts, whereas c-/bs transcription is slightly delayed. EGF
induces c-myc gene transcription later than does TSH. The
kinetics of c-/os messenger RNA (mRNA) synthesis are, how-
ever, similar for TSH, EGF, and phorbol esters (65, 66). After
an initial increase in c-myc mRNA in response to TSH, these
transcripts decrease below control values, apparently related
to a negative transcriptional signal (67). c-myc Gene activa-
tion is thus tightly regulated in its role in thyrocyte growth.

in. Epidemiological and Clinical Considerations
Thyroid carcinoma is an infrequent tumor with geographic

variation in its prevalence, the annual rates of newly diag-
nosed cases vary from 0.9/100,000 men and 2.4/100,000
women in Britain (68) to 2.1/100,000 men and 5.2/100,000
women in the United States (69). Thyroid cancer accounts
for 0.6% and 1.6% of all cancers among men and women,
respectively, in the United States (70). In Japan the combined
estimate is 1.4/100,000 of the population (71), whereas the
crude relative frequency of thyroid cancer among Kuwaiti
females was reported as 10.5% (72).

The incidence of thyroid cancer in the United States in-
creased during the four decades 1935-1975, reflecting better
diagnosis as well as the emergence of radiation-related can-
cers (73-75). That trend has stopped (76). Moreover, since
the 1960s, survival rates for white patients have steadily
increased (77).

Papillary carcinoma accounts for 85% of differentiated
thyroid follicular cell cancers in iodide-sufficient countries
(78), while the remaining epithelial thyroid cell tumors are
predominantly follicular carcinomas. Anaplastic carcinoma,
whose incidence has been decreasing, often arises from
preexisting well differentiated (usually follicular) carcinoma
(79,80). An increase in the prevalence of follicular carcinoma
under conditions of iodide deficiency or endemic goiter ac-
counts for the overall increased incidence of thyroid cancer,
including anaplastic carcinoma, in such areas (81-84a). In-
cidental microscopic (occult) to small papillary carcinomas
are detected with such high frequency at autopsy (85) that
one must conclude that the vast majority are not clinically
relevant. The factors determining the transition from micro-
scopic foci to detectable thyroid carcinoma are unknown.

Both cohort and case-control studies have established a
strong link between external radiation and benign as well as
malignant thyroid tumors (78, 86-99). By contrast, internal
radiation probably does not enhance the risk of thyroid
cancer (88, 100-102). .. '

The relationship of thyroid cancer to endemic goiter has
long been suspected (103). Comparative studies of thyroid
cancer incidence between areas with and without endemic
goiter have not, however, always supported that notion (104,
105). The effect of iodide supplementation on thyroid cancer
incidence has also yielded conflicting results (106). Indeed, a
recent case-control study from Italy suggested that the influ-

ence of iodide supplementation on cancer incidence
marginal (105). It is unclear whether the association of th**
roid cancer with benign nodules and goiter is real or relatli
to ascertainment bias (89, 92, 94). Likewise, the notion th7
thyroid carcinoma is more frequent in patients with Grav
disease, and tends to be more aggressive (107-109) has h^L
challenged (110, 111). *~™.De«»

Several host factors that determine the outcome of thyrow
cancer have been identified. These include patient age, turn
size, histological appearance, local invasion, lymph node and
distant metastases, and aneuploidy (112-114). Several din
cal staging and prognostic systems have been based on theJ
factors. ^

IV. Genetic Factors

Genetic factors are not generally thought to be important
in predisposing to thyroid follicular carcinoma. Thyroid car-
cinoma is, however, increased in-such syndromes as Gard-
ner's syndrome (adenomatosus polyposis) (115-121) and
Cowden's disease (hamartomas) (122). In addition, reports
of remarkable aggregation of papillary thyroid cancers in
families (123-125) indicate that genetic factors may be rele-
vant to thyroid follicular ceil cancer. In a genetically homo-
geneous population, 3.8% of patients with papillary cancer
had similarly affected family members (126). Genetic factors
appear to be more important in the genesis of papillary
carcinoma (123,124, 126) compared to follicular carcinomas
(see Ref. 127 for review; 128). Familial aggregation of follic-
ular carcinoma is documented in families with dyshormon-
ogenesis (129). Female patients with papillary carcinoma (but
not their relatives) are at greater risk for other cancers [in-
cluding breast, renal, and central nervous system malignan-
cies (126,130-133)].

There are also indications that certain ethnic groups may
be more susceptible to the effect of ionizing radiation. Fur-
thermore, in instances where siblings were irradiated, the
incidence of thyroid tumor development was more than
could be accounted for by chance (134).

The association of thyroid cancer with certain HLA alleles
represents an interplay between the environment and genes
in its pathogenesis, and has been found only in some popu-
lations. While no association of HLA antigens with well
differentiated thyroid cancer was found in patients from an
iodide-sufficient area (Newfoundland) (135), HLA-DR1 was
significantly increased in patients from iodide-deficient East-
ern Hungary (136, 137). The increase in HLA-DR1 was
greatest in patients with follicular cancer (137). Sridama and
colleagues (138) in Chicago reported an association of thyroid
cancer and HLA DR7, particularly in patients with folliculr
carcinoma (138). Moreover, immunoglobuiin G heavy chain
allotypes interacted with HLA to enhance the risk conferred
by the latter (139).

To account for these variations in HLA association with
thyroid cancer in different geographic locations, it has been
suggested that HLA DR1 positive individuals were at in-
creased risk for thyroid cancer in iodide-deficient areas and
that this predisposition disappeared once iodide sufficient

. predominated (127,137). In the absence of iodide deficiencf.
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other HLA-linked influences were important for those ex-
posed to other environmental hazards. It is interesting that
the susceptibility of rats to diethylnitrosamine carcinogenesis
is related to the inactivation of recessive genes that map to
MHC (140) and that nitrosamines induce thyroid rumors in
mice (see also Section VHI.A.).

Last, the 3-fold greater incidence of thyroid cancer in
females is probably related to the female hormonal milieu
rather than to the contributions of active genes on the X
chromosome. A case-control study (74) has suggested an
association of thyroid cancer with pregnancy,

The cellular genetic events leading to thyroid cancer are
somatic in nature and thus restricted to thyroid tumor tissue.
The influehce of paternal imprinting (141, 142) on oncogene
activation is unknown.

V. The Cell Cycle and Cancer
Multicellular organisms have highly coordinated mecha-

nisms to control cellular interactions. These signaling net-
works mediate normal embryonic development and the re-
sponse to wound healing or infection. Aberrations in growth
factor signaling pathways are intimately linked to cancer
(143). Malignant cells arise as a result of a stepwise progres-
sion of genetic events that include the unregulated expression
of growth factors or components of their signaling pathways.

Individual cells receive two classes of signals. One type
promotes cell growth largely through the elaboration of
growth factors. Another type of signal allows cells to inhibit
the growth of their neighbors through regulatory proteins.
The known number of genes involved in control of the ceil
cycle is increasing rapidly. When the function of some genes
are lost, cells become unresponsive to growth-inhibitory
signals. Several of these genes meet the requirements for
'tumor suppressors.' The inhibitory signals may involve not
only proteins that function as switches in the cycle, but also
diffusable growth inhibitors and hormones (144-146). The
cell responds to inhibitory signals in three ways: 1) pausing
in a certain phase of exponential growth often representing
arrest at the d-S phase transition; 2) postmitotic differentia-
tion; 3) senescence or apoptosis (programmed cell death)
(147).

Growth signals allow cells in the resting (G0) phase to
enter and proceed through the cell cycle. The resting cell is
first advanced into the Gj phase of the cell cycle by 'com-
petence' factors, traverses the Gi-S phase and becomes com-
mitted to DNA synthesis under the influence of 'progression'
factors. Although the notion of 'competence' was only dem-
onstrated in some systems, its generalization is probably
justified. Transition through the G0-Gi phase requires sus-
tained growth factor stimulation over several hours. Disrup-
tion of the signal for only a short period of time results in
the cell reverting to the G0 phase. There is also a restriction
point in the GI phase during which the presence of both
competence and progression factors are necessary for the cell
to advance through its cycle (Fig. 1). thereafter, only pro-
gression factors are needed. Competence factors include EGF
and FGF whereas IGF-1 and insulin act as progression factors
(143). The cytokines such as TGF/3, interferon-7, and tumor

Oncogene
substitution

TGFP
Inhibition

FIG. 1. The eel] cycle. Sites of action of protooneogenes and growh
and growth-inhibiting factors. Some protooncogen.es, e.g. c-ras and
growth factors such as EGF, contribute to the cell "competence" and
are complemented by the action of others, e.g. insulin, to allow pro-
gression of the cycle beyond the GrS restriction phase, thus committing
the cell to DNA synthesis. For human thyroid ceils TSH is a "compe-
tence" factor. Both retinoblastoma (Rb) and p53 proteins act at the
Gt-S restriction phase to halt cell cycle progression. One of the path-
ways of Rb growth-inhibiting influence i» through the induction of the
TGFjS gene [Adapted with permission from S. A. Aaronson: Science
254:1146-1153,1991 (143). °1991 by the AAAS.]

necrosis factor can antagonize the effects of growth factors.
Activated oncogenes may encode growth factors (e.g. c-sis).
receptor protein kinases, or other enzymes that participate in
mitogenic signaling. Oncogenes such as c-ras and c-trbB
function as competence factors. Other oncogenes, e.g., bcl-2
(148-150), act by blocking apoptosis and allowing cells to
proliferate preferentially in response to mitogenic signals and
may indeed block the apoptotic affects of c-wyc (151-153).
p53 And retinobiastoma (Rb) proteins function fay regulating
the cycle at the critical d to S phase transition (154-156).
Several of the growth factors participate in tumor progression
by providing in a paracrine fashion the1 environment for
proliferation, invasion, and metastases of epithelial cells. A
number of growth factors including FGF, EGF, and hepato-
cyte growth factor participate in tumor-sustaining neoangi-
ogenesis.

Are tumor cells intrinsically more unstable than normal
ceils, or do they merely acquire their abnormal karyotypes
through increased division and intense selection at normal
rates of chromosomal rearrangement? This critical question
has been definitively answered only recently (157). Many
tumor cells exhibit rates of gene amplification several orders
of magnitude greater than normal cells. Gross chromosomal
changes such as marked aheuploidy, translocations, or dele-
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tions are not nearly matched by the rates of point mutations
(158). Such genomic instability is a generic trait inherited in
human cancer-prone syndromes (159, 160y. These may be
associated with a defect in d-S phase and is upstream from
the p53 gene in a pathway that activates the G\-S checkpoint.
X-ray exposure of eukaryotic cells results in Gi arrest and is
associated with an increase in p53 protein. Ceils lacking p53
or having a dominantly negative mutation lack this d-S
delay (161). In premalignant cells, increased genetic instabil-
ity after DNA damage related to radiation, carcinogens, or
single strand breaks results in duplication, amplification, and
replication of broken sister chromatids (157, 161). Some of
these events may result in the loss of growth suppressor
genes and amplification of oncogenes, although the picture
is likely more complex (162, 163). This route for carcinogen-
esis is worthy of study in radiation-related thyroid tumors.

VI. Thyroid Cell Cancer—Mono or Polyclonal?
Recent work involving mutated ras, GSa (164), and rear-

ranged RET/PTC (PTC = papillary thyroid carcinoma onco-
genes) (165) have indicated variations in the presence of
mutant gene products within the same tumor tissue. Whether
these abnormalities are secondary or primary in origin, or
related to multiple foci each arising with a separate array of
mutations, are pertinent questions, and raise the issue of the
clonality of thyroid tumors. If tumors arise by a series of rare
mutations or epigenetic events, it is implied that such lesions
derive from a single cell.

Determination of clonality can be achieved by X chromo-
some inactivation analysis, taking advantage of the fact that
one of two X chromosomes is functionally inactivated early
in mammalian embryogenesis (166). X-inactivation is ran-
dom involving either the paternal or maternal X chromosome
so that female tissues are mosaics containing-an equal mixture
of cells in which maternal or paternal chromosomes have,
respectively, been activated. Taking advantage of differences
in restriction fragment length polymorphisms (RELPs) be-
tween two alleles in heterozygote females and the ability of
some restriction enzymes to identify the methylation differ-
ences (167) between the functional and inactivated genes,
the clonality of benign and malignant thyroid tumors has
been studied (168-171). Using,RFLPs at the hypoxanthine
phosphoribosyltransferase, phosphoglycetokinase (PGK),
and more recently M27 marker genes (171), most benign
nodules and malignant thyroid tumors were shown to be
monoclonal in origin. Nine of 13 rapidly growing nodules
within 12 multinodular goiters were also found to be mono-
clonal using the highly informative M27 marker (171), One
hyperfunctioning thyroid nodule in a 22-month-old child
w.as polydonal (172).

A problem in this analysis of solid tumors is the potential
contamination of tumor samples by nontumorous tissue. The
polymerase chain reaction (PCR) may facilitate the analysis
for monoclonality of small homogenous tissue fragments
(173): Hpall digestion of DNA followed by PCR amplification
with primers oh each side of Hpall restriction site within the
PGK gene would allow the amplification of only the meth-
ylated copy of the gene (174). Random inactivation of PGK

is associated with two DNA fragments whereas monoclonal
ity is associated with one band.

VII. Growth Factors and Their Receptors in Thyroid
Tumors

Unregulated growth signals acting on cells with multiple
transforming lesions result in malignancy. These signals niav
be the result of constitutive synthesis of growth factors
constitutive activation of their receptors, or of switches jii
the signal transduction pathways. It is thus of interest to
review what is known in this context of thyroid carcinoma
(175).

EGF and EGF receptor have been detected by immunohis-
tochemistry in malignant thyroid tumors, but not in normal
thyroid tissue, benign tumors, or multinodular goiter (17g(
177). The presence of both the growth factor and receptoi
was more frequent in papillary than in follicular carcinoma
samples (176). EGF receptor was also detected by radioligand
assays in normal and hyperplastic thyroid tissue, as well as
benign and malignant tumors (178). In that study, the level
of EGF receptor was found to be greatest in anaplastic tumor
tissue (178). The predominance of EGF receptor'expression
in papillary carcinoma was extended to the transcripts of c-
erbBl and c-erbB2/neu oncogenes, which encode EGF recep-
tor or analog, respectively (179,180). A 2- to 3-fold increase
in c-erbBl and c-erbB2/neu mRNA in papillary carcinomas
and their lymph node metastases, as well as in one benign
adenoma, compared to thyroid tissue were reported (180).
No structural abnormalities in these protooncogenes were
detected in a large number of benign and malignant thyroid
tumors (179, 181).

EGF expression was shown to be of prognostic value in
that tumors with higher EGF expression were more likely to
recur (177), analogous to the findings with c-erBl and c-
erbBI/neu (180).

No evidence for rearrangement or mutation of c-erbA (T5
receptor) was found in thyroid tumors (179). At least some
mutated Tj receptors interfere with Ts action (as well as
perhaps that of related receptors in a dominant manner (Refs.
182-184 for review), which makes them potential candidate
for tumor suppressors (147).

Analysis by immunohistochemistry revealed TGF/J expres-
sion in 58% of malignant thyroid tumors, but not in benign
adenomas or normal thyroid epithelium (185). In follicular
carcinomas TGF/3 immunostaining was related to the pres-
ence of H-ras 61 (Glu —» Arg) mutation. The fact that TGFd
is a potent inhibitor of epithelial thyroid cell growth and is
synthesized by thyroid cells suggests that the increase in
TGF/3 may compensate for decreased TGFjS sensitivity (186.
45). TGFa appears to regulate the expression of EGF receptor
in some tumors and thus promotes their growth (187), but
was not studied in thyroid cancers. Apparently both benign
and malignant thyroid tumors elaborate IGF-I (38,188) more
than normal tissue, which may allow nodules to become
autonomous (26).

In anaplastic thyroid carcinoma, receptors not normally
expressed in the normal thyroid gland may be detected.
Functional but aberrantly glycosylated receptors for platelet
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derived growth factor (PDGF) were described in an anapias-
tic thyroid carcioma ceil line (189).

VIII. Oncogenes Involved in Thyroid Carcinogenesis

A. rets
The mechanisms by which receptor tyrosine kinases stim-

ulate specific intracellular signaling pathways have been
elucidated by the identification of a conserved protein motif
of the src homology 2 (SH2) domain, which is found in a
remarkably diverse group of signaling proteins (190). This
includes nonreceptor protein kinases, phbspholipase C--yl,
ras guanine triphosphatase (GTPase) activating protein
(GAP), and other molecules referred to as adaptors. Proteins
with SH2 domain frequently have another distinct sequence,
the SH3 domain, which is also implicated in the regulation
of protein-protein interaction during signal transduction. For
example, the autophosphoryiation of the insulin receptor
results in tyrosine phosphorylation at the SH2 consensus
sequence of a 185 kDa cytosoik protein (27), which then
recruits and activates SH2-containing phosphatidylinositol
(PI) 3'-kinase (191). A similar scheme may be envisaged for
GAP, which upon phosphorylation associates through SH3
domains with guanine nucleotide exchange factors (190,
192), thus regulating ras and ras-like G proteins. Moreover,
tyrosine protein kinases, through SH2-containing protein
adaptors (193, 194) may activate ras-dependent signaling
pathways (Rg. 2). The intermediate elements in this cascade
have been recently elucidated, at least in some settings (see
Ref. 195 for review).

GAP stimulates the GTPase activity of ras which is a
critical component of intracellular mitogenic signaling path-
ways (194, 196) and also acts as a negative regulator of ras
function-(197). Mutations that cause oncogenic activation of
ras lead to accumulation of ras bound to GTP, the active

TYR-P

Guanin* Nuel«otid*
Exchang* Factor*

GTPts* activating
9rot*in*

t ..
Ras-lika G Proteins

PJG. 2. A postulated schema for the role of src-homology (SH) domains
2 and 3 for coupling tyrosine kinases to G proteins. According to this
model, proteins with SH2 and SH3 consensus sequences and catalytic
domains would be capable of multiple point interactions upstream with
tyrosine kinases and downstream with ras-like small G proteins (adap-
tors) and their substrates. Interaction with SH3 domains allows
GTPase activating proteins (GAPs) to recruit guanine nucleotide ex-
change factors regulating ras and adaptor proteins (190).

form of the molecule (196). These mutations block the ability
of GAP to promote conversion of ras to its inactive, GDP-
bound form (194). GAP may also function in a complex with
ras as an effector of its downstream signaling functions (198).
Thus, mutations that impair interaction of ras with GAP also
block the biological function of ras. ras Protein (p2I)'is
probably excited by an activator upstream in its signaling
pathway and passes these signals to a downstream effector
pathway (Fig. 3). It is conceivable that constitutive activation
or amplification of the signals acting along ras or ras-like
pathways may be involved in cell transformation. It is also
possible that mutations in the SH2 adaptors may have similar
consequences. The signals involved in the increased expres-
sion of ras during normal thyroid cell growth (199) are
unknown.

ras Protooncogene mutations are found in more than 30%
of human tumors (200). Three families of ras proteins have
been identified, Ha-rasl, K-ras2, and N-ras, each of which is
located in a separate chromosomal region (196). All three are
subject to mutations, although some mutations tend to pre-
dominate in specific tumors, e.g. K-ras mutation at codon 12
in pancreatic carcinoma (201) and adenocarcinoma of the
lung (202). Mutations at residues 12, 13, or 61 of any of the
ras protooncogenes convert them into active oncogenes (196);
other mutations may also be relevant to constitutive signal-
ing. Mutations at codon 61 are the most efficient in changing

Nucleus

Transcription
- t

FlG. 3. The role of ras in the signaling pathway from tyrosine
and other receptors to transcription factors. Raf-1 autokinase is ,m
important station in the ras-mediated transduction of the action ut
many tyrosine kinases— including src. It is apparent, however, chat
the maximal activation of Raf-1 is dependent on synergy between a
direct as well as a ras-mediated effect. Mitogen-activated protein
(MAP) kinases are positioned in the ros-pathway leading to the phos-
phorylation of the ribosomal S6 kinase (ppSO™*) and in turn nuclear'
transcription factors such as c-/bs and jun. MAPK is activated bv_ a
cascade of MAPkinase kinase (MAPKK) and MAPkinase kinase ki-
nase (MAPKKK). One of the targets of phosphorylation by EGF
treatment of thyroid cells is MAPK (56). The details of this activation
pathway are, however, unclear. Platelet dependent growth factor
(PDGF), which is expressed aberrantly in anaplastic carcinoma (1891.
activates the ras and Raf-1 pathways (143). Cellular elements inter-
mediary between receptor tyrosine kinase—Sem2 and son of sevenless
(sos2) which interact through SH2 and SH3 domains—and ras have
recently been identified (195). [Adapted with permission from T. M.
Roberts: Nature 360:534-535,1992 (225). © 1992 Macmillan Magazines.
Ltd.]



208 FARE), SHI, AND ZOU

the conformation of ras proteins and are associated with a
reduction in GTPase activity (203).

ras Mutations are not sufficient for malignant transfor-
mation. The ability of v-Kris-ras to transform rat (204) and
Ha-ras human ,(205) thyroid cells in primary cultures seem-
ingly contradicts the role of ras mutations as early events in
thyroid cartinogenesis. Helper viral elements, however, do
complement the role of ras in transformation in these studies
(13). Indeed, even rare events such as double ras mutations •
are not necessarily enough for thyroid cell transformation
(206). Moreover, a mutant ras gene expressed from a retro-
viral vector induces thyroid cell proliferation only in the
presence of growth factors (207). This growth was inhibited
by phorbol esters through regulation of protein kinase C
activity (207). Overexpression of the ras-21 protooncogene
appears to be part of growth-promoting pathways in normal
human thyroid and nodular goiter (199).

Distribution of ras RFLP in thyroid cancer DNA specimens
showed unusual patterns, some of which probably reflected
mutation in the coding sequence of the gene (208, 209). An
increased abundance of ras protein or mRNA was reported
in some studies but could not always be related to the degree
of tumor de-differentiation (176, 210, 211). Rearrangement
of ras protooncogenes in thyroid tumors is uncommon and
not specific for malignant tumors (179).

ras Gene point mutations are of more interest mutations
in all three families of ras oncogenes have been detected in
both benign and malignant thyroid tumors (164, 179, 206,
212-223). Most of the mutations were found at residue 61
of H-ras and N-ras genes (206, 212, 220). Variation in the
prevalence of ras point mutation thyroid tumors does occur
among different series (164, 206, 220) and may be related to
the histological and degree of differentiation of the tumors
as well as genetic determinants and environmental factors,
such as dietary iodide supply (206). It is of interest that
thyroid tumors induced by chemical carcinogens in rats
involve activation of H-ras (219) whereas FQ-ros is activated
exclusively in 60% of radiation-related tumors in man (224)
and rat (219). In the former, radiation does not appear to
enhance the overall incidence of ras protooncogene muta-
tions (224).

ras Mutations occur predominantly in follicular thyroid
cancers (206, 212, 220, 223). Twelve percent of Hurthle cell
tumors, a variant of follicular carcinoma, harbored N-ros
mutations (215). Interestingly, normal tissue adjoining the
tumor also exhibited ras-activating mutations, emphasizing
that cellular events in addition to ras mutations are necessary
for malignant transformation. The notion that ras mutation
is relatively specific for microfollicular benign adenomas as
opposed to macrofollicular histology (220) could not be sus-
tained (206). An increased frequency of ras mutation in
metastatic tumors was observed in some (179, 220) but not
in other series (206, 214).

The ras mutations reported are generally of the transition
type (in which a purine is substituted for a purine or a
pyrimidine for a pyrimidine), although it has been suggested
that transversion mutation (in which a purine is substituted
for a pyrimidine and vice versa), may be relevant to dediffer-

entiated thyroid tumors (220). Preferential mutation at M
and N-ras 60 is apparently lost in anaplastic carcinoma (2?nl
and awaits further confirmation. ' *• °)

B. c-myc and c-fos

The c-myc nuclear proteins act as transcription factors"
myc Dimerizes with its partner Max protein and binds to a/"
consensus DNA sequence (226-229). Max heterodimeriz^
preferentially with myc, which homodimerizes poorly (23iyf
The formation of myc/Max dimers is essential for myc traris!
forming activity whereas myc homodimers are inactive (23n
c-myc Synthesis declines as the cell cycle progresses (23?\
and is shut off with inhibition of proliferation associated
with differentiation, c-myc Has also a central role in sotn»
forms of apoptosis (233-235), particularly under growth-
limiting conditions. Bd-2 mitigates the apoptotic effects of
deregulated myc expression without affecting its ability to
promote continuous cell growth (152,153).

Alterations in the c-MYC locus occur in a variety of tumors
primarily leading to constitutive, expression of myc. Such
deregulation may result in a shift from Max homodimers to
myc-Max heterodimers, and enhances the activation of genes
normally modulated during growth and differentiation. Both
myc and Max may be regulated by phosphorylation (236).

Activation of c-myc by translocation is restricted to lymph-
oid tumors, c-myc Amplification appears to be a secondary
selection factor for increased transformation, as opposed to
a primary genetic lesion leading to malignancy (237). The
5'-deletions of the c-myc gene described in thyroid tumors
(238, 239) were subsequently found to be germline in origin
(238) and to exist in unaffected healthy individuals. No gross
rearrangements of c-myc were documented (214, 240-242).
Immunohistocrtemkal studies and mRNA abundance indi-
cated increased expression in thyroid tumor tissue (176,177,
240, 242, 243). The abundance of c-myc transcripts may
predict the course of thyroid malignancy: the less differen-
tiated a tumor, the greater the abundance of c-myc transcripts
(240, 244, 245). Since c-myc message abundance was not
reflected (at least in papillary carcinoma) in the level of c-
myc gene products (177), there may be. differences in c-myc
message stability in such tumors, c-myc mRNA .correlated
negatively with that of the TSH receptor (244, 245).

The protooncogenes c-fos and c-jun are immediate early
genes that regulate the expression of specific target gene
(246). Depending on cell type the expression of these genes
can be activated by second messengers which stimulate
protein kinase A and C activities and calcium flux (247-250).
The protein products of the genei interact through leucine
zipper domains to form fos/jun heteVodimers or jun/jun horn-
odimers. As components of the AP-1 transcription complex
they bind to the regulatory sequence of many genes to initiate
transcription (251).

No evidence for rearrangement or amplification of c-f&
was noted in thyroid tumors (214, 242). Increased c-/«
transcripts were found in 60% of malignant tumors and 90%
of benign adenomas. There was no relationship between the
increased transcripts to the biological behavior of the tum°«
(240). Similar conclusions were reached in our studies of M
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thyroid tumors (our unpublished observations). This pattern
of c-fos message expression is consistent with its role in
differentiation.

C. PTC/RET oncogene
PTC/RET [previously PTC for papillary thyroid carcinoma)

oncogene (252-256) results from the fusion of the tyrosine
ynase domain of the protooncogene ret with a functionally
unknown sequence as a result of chromosomal re-
arrangement. The most frequent partner of this re-
arrangement is the D10S170 locus (257-259) identified with
probe H4 (252). The activation of PTC/RET was first sus-
pected by Fusco et al. (260) when they found 25% of papillary
carcinoma samples were positive in a transfection assay. The
transforming activity was cloned and identified by two in-
dependent groups (252, 254). The rearrangement was iden-
tified by RFLP and the breakpoint was found to be highly
variable within the PL. sequence but relatively constant in
the ret protooncogene, mapping to the intron between the
transmembrane domain and the first exon of the tyrosine
kinase domain (252, 261). All the characterized recombina-
tions, however, produce identical transcripts encoding a pro-
tein of 520 residues (252, 257). The activation of RET/PTC
results from paracentric inversion of the long arm of chro-
mosome 10, inv (10) (q 11.2 q21) with breakpoint involving
the regions where RET and D10S170 are located (262)
(Bg. 4).

The unrearranged ret protooncogene sequences appear to
be involved in neuronal differentiation (263) and to be
amplified in neuroendocrine tumors (264, 265). Tyrosine
kinase is not activated in the unrearranged ret gene product
(266), although its natural ligand is unknown. There are two
isoforms of ret protooncogene which arise by alternative
splicing and differ by having 9aa vs. 51aa at their respective
C termini. The 51aa variant is glycosylated .to a variable
degree in different cell types (267-270). The ret protoonco-
gene is not expressed in thyroid follicular cells but is in

5' HET/PTC
(RET-O10S170)

10 inv(10)(q11.2q21)
FIG. 4. Paracentric inversion of the long arm of chromosome 10 (10
inv(10)(qll.2 q.2D) in thyroid papillary carcinoma. This inversion
places an unknown sequence detected by probe D10S170 upstream
from the tyrosine kinase domain of the ret protooncogene. [Reproduced
with permission from M. A. Pierotti et ai.: Proc Natl Acad Sci USA
89:1616-1620,1992 (262).] .

parafollicular cells, while its rearranged form is expressed in
papillary cancer cells (252).

The RET/PTC rearrangement is specific for the thyroid,
being undetectabie in 250 nonthyroidal malignancies (165*
261,271). Rearrangement of ret previously described in other-
rumor DNA was found to have occurred in vitro during
transfection procedures (256). There is a wide geographic
variation in the rate of RET/PTC rearrangement in thyroid
tumors (Table 1) perhaps related to genetic and/or environ-
mental factors as well as methodology (165, 261, 271, 272).
Transfection assays (252, 260), RFLP (252), and reverse
transcription-PCR (RT-PCR) (165, 261, 271, 272) have been
used to examine oncogene activation and rearrangement.
Only the RT-PCR approach is predicated on the identity of
the sequence bridging the breakpoint. The rearrangement is
apparently specific for papillary carcinoma, although it is
unlikely to occur in more than 20% of these tumors (271,
272).

Two groups have, however, reported RET/PTC re-
arrangement in benign nodules, nodular goiter, and follicular
carcinoma (165, 274). In the study of Ishizaka et ,al, (165),
protooncogene activation was regionally localized within
benign nodules and multinodular goiter and was attributed
to the high rate of microscopic papillary carcinoma in Japan.
The issue of focal PTC/RET rearrangement in such microfoci
may be resolved by in situ hybridization with an appropriate
probe (275). In a subsequent report, Jhiang et al, (261) do not
comment on the frequency of PTC/RET rearrangement in
follicular adenomas they reported earlier (274). It is interest-
ing that ret is rearranged in rumors with fouicular/papillary
histology (275), giving molecular credence to the designation
of these tumors as papillary.

It has been suggested (261) that patients with papillary
carcinoma with rearrangement of the ret protooncogene have
•a greater likelihood of developing distant metastases. These
studies in a small group await confirmation.

It also bears emphasis that only one third of the samples
with ret rearrangement show evidence of fusion with Ht
(271). The remaining samples will dearly not be identified
by an RT-PCR strategy in which a probe spanning the
breakpoint is used for screening (261, 271, 272).

The issues of specificity, the mechanisms of RET/PTC
activation, and the rearrangement partners other than H4
are being rapidly clarified (266). ret May undergo re-
arrangements in papillary thyroid carcinoma with a partner
other than D10S170 (H4) sequences. This rearrangement
may involve either the 9aa (Ptc2) or 51aa (Ptcl) C-terminal
form of ret. All forms of ret rearrangement are distal to the
transmembrane domains and therefore localize the hybrid
protein intracellularly (Fig. 5). As a consequence, the rear-
ranged gene product constitutively activates the tyrosine
kinase, which autophosphorylates at a tyrosine residue. The
ptcl and ptc2 are apparently regulated by phosphotyrosine
phpsphatases (266). The translocation of the activated rear-
ranged ret oncogene may allow them to escape regulatory
influences and to constitutively signal mitogenic pathways.
It remains to be seen what proportion of papillary carcinoma
utilizes non-D10S17Q sequences as a partner in the PTC/
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TABLE 1. Geographic distribution of PTC rearrangement

Papillary
Foliicular
Anaplastic
Adenoma
Others

USA'
11/65
0/11
0/2

USA*
4/32
0/3

0/8
0/28

France"
8/70
0/13
0/5
0/18

Italy3

14/42
0/13
0/8
0/16

Japan2

1/11
4/19
1/2

Saudi Arabia* ^~~~
1/40 . ^~~~
0/4
0/5
0/1
0/7

• Santoro et aL (271).
'Jhiangetoi. (261).
' IsHizaka et aL (165).

(272).
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FIG. 5. The rearrangements of the ret protooncogene in papillary thyroid carcinoma. The genomic ret gene is shown schematically at the top of
the figure. Two forms of the ret protooncogene arise by alternative splicing and have in their COOH termini nine or 51 residues, respectively. The
51 COOH terminus form is giycosylated to variable degrees and the degree of glycosylation may differ from one tissue to another. In the thyroid.
150-kDa and 170-kDa differentially giycosylated forms exist. In thyroid papillary carcinoma, both ret protooncogene isoforms are rearranged
Initially, the Slaa. COOH terminus form was found rearranged fusing its kinase domain with an unknown sequence H4 (D10S170) (Ptcl); this
probably accounts for no more than 30% of the rearrangement. Other sequences, yet to be identified, can also be involved in the ret protooncogsM
rearrangement and result in an 81 kDa protein (ptc2). Apparently, the short iaoform of the ret protooncogene undergoes a similar type of
rearrangement in papillary carcinoma (shown here as ptcx, a 76 kDa hybrid). All rearranged forms of ret protooncogene lose their transmembrant
(TM) domain and the fusion proteins are thus localized intracellularly. Whether because they undergo conformational changes or are exposed to
new substrates, these fusion products exhibit constitutive activation of the ret tyrosine kinase. (] = carbohydrate adducts).

RET rearrangement (266, 271). RET/PTC oncogene-trans-
fected rat thyroid cells lose their differentiated function but
are unable to grow in soft agar or to cause tumors in nude
mice. An undifferentiated malignant phenotype is obtained
when both RET/PTC and Ha-ras or Ki-ras oncogenes are
transfected (276).

We have studied a large number of benign and malignant
tumors using the RT-PCR approach (272). Only one out of
40 thyroid papillary carcinomas was found to have under-
gone PTC/RET rearrangement, suggesting a very low rate of
rearrangement RET/D10S 170 locus in the Saudi population
(Table 1). Of interest was that this tumor also harbored a
mutation, in the tumor suppressor gene p53 (Ala161 —» Thr).
It is unclear whether this is a chance finding or implies
selection of ret rearrangement for p53 mutation.

Given the activation of ret protooncogene by re-
arrangement in papillary thyroid carcinoma, it is particularly

intriguing that missense germ-line mutations of RET have
recently been proposed as the genetic basis for MEN2A
liability (273).

D. TRK-Tl
A second transforming event involving gene re-

arrangement which activates a tyrosine kinase protoonco-
gene was found in papillary carcinoma (277). The oncogene
involved, called TRK-Tl, is generated by an intrachromoso-
mal rearrangement that links the tyrosine kinase domain of
TRK protooncogene to the 5'-region of the TPR gene, both
mapping to chromosome 1 q23-q24 (278, 279). The TRK
protooncogene encodes a surface receptor for nerve growth
factor (NGF), and the TPR gene a protein with likely cyto-
skeletal function. The mechanism of TRK-Tl activation is
not well understood and may include TRK rearrangemen'
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that activates the gene, moves the hybrid gene product to
the cytoplasm exposing it to unusual substrates or may result
in confonnational changes which mimic those produced by
interaction with, the iigand, or combinations of these mech-
anisms (280).

More than one type of rearrangement involving the NGF
receptor chain may be generated in papillary thyroid carci-
nomas (280). The TRK-T1 rearrangement was suggested to
be common in papillary carcinoma (277), which, in combi-
nation with ret rearrangement, accounts for constitutive ac-
tivation of tyrosine kinase in 50% of these rumors (280).

E. Met
The met oncogene is a 190-kDa heterodimer composed of

two disulfide-linked (a, ft) subunits. The a-subunit (50 kDa)
is heavily glycosylated and extracellular. The ^subunit has
an extracellular domain involved in Iigand binding, a trans-
membrane segment and cytoplasmic.tyrosine kinase domain
whose activity is regulated fay phosphorylation (281). The
mature receptor is derived from glycosylation and extracel-
lular cleavage of a 170-kDa precursor by urokinase (282).
The multifunctional cytokine hepatocyte growth factor/scat-
ter factor (HGF/SF) is the Iigand for met. Multiple met
transcripts that encode proteins differing in extracellular and
cytoplasmic domains have been identified: one form results
in undeaved precursor chain and another in a soluble form
(reviewed in Refs. 281 and 283).

HGF/SF is itself a heterodimer arising from the cleavage
of a precursor. The light chain is related to serine protease
whereas the heavy chain belongs to the plasminogen family
of proteins (284-286). HGF/SF binding to met enhances
receptor kinase activity by tyrosine autophosphorylation of
the ft- sufaunits whereas receptor kinase activity is negatively
regulated by serine phosphorylation mediated by protein
kinase C.

The met oncogene is constitutively activated by amplifi-
cation of the gene or through the expression of a splice
variant in which the precursor is not deaved into the two
subunits (281). Activation of met is associated with mitogen-
esis as well as motogenesis and may thus contribute to tumor-
aggressive and metastatic behavior in neoplastic human tis-
sues (285, 286). Met transcripts and protein were increased
in a high proportion of gastrointestinal and hepatocellular
.carcinomas, and in malignancies arising from meningeal and
neural tissues.

Met oncogene is amplified in approximately 70% of pap-
illary and poorly differentiated carcinomas, but in only 25%
of follicular carcinomas. Met was not detected in anaplastic
or medullary carcinomas, nor -in a variety of benign thyroid
disorders and normal thyroid tissue (287, 288). The amplifi-
cation of met gene was not, associated -with gene re-
arrangement, although several samples exhibited an 85-kDa
tf-subunit soluble variant (288). In most tumors with met
amplification an autocrine source of HGF/SF is not readily
detectable. The elaboration of this Iigand by parafollicular
cells (289) seemingly establishes a paracrine relationship in
the thyroid. Interestingly, of the 10 papillary or poorly dif-
ferentiated carcinomas also examined for RET and TRK re-

arrangements, in three RET was rearranged and TRK in one
and, except for one tumor with RET rearrangement, ail
samples exhibited amplification of met. This emphasizes the
important contribution of met in the tyrosine kinase 'path-
way' for papillary cardnogenesis (288). Met overexpression
was associated with aggressive clinical and histologicaT pRe-
notype.

Activation of tyrosine kinase, whether by gene amplifica-
tion or rearrangement, appears to be highly specific for the
transformation of thyroid follicular cells into papillary ru-
mors. It is also of interest that papillary thyroid carcinoma is
the only type of nonhematopoietic tumor with a high fre-
quency of gene rearrangement.

F. Gsa mutations

The G proteins are a subfamily of the GTP-binding pro-
teins, which indude ras and ros-like proteins (290, 291). The
G proteins are heterodimeric, composed of a-, £-, and y-
subunits each encoded by a distinct gene. The a-subunit
shows structural and functional homology with other mem-
bers of the GTP binding protein superf amily. It binds guanine
nucleotides with high affinity and specificity and has intrinsic
GTPase activity. /8- And 7-subunits are noncovalently bound
into a dimeric complex. They are necessary for regulating the,
function of certain a-subunits as well as in directing the
trimolecuiar complex to the plasma membrane (reviewed in
Refs. 292 and 293),

G proteins couple a diversity of receptors with their effec-
tors by acting as molecular switches activated and deacti-
vated by the GTPase cyde (292). The variety of G subunits
identified, details of the functional domains of Ga, and an
overview of the strategies used to eluddate the receptor/G
protein coupling were recently reviewed by Speigel et al.
(292). Gsa is utilized widely as a positive transducer for the
activation of adenyiate cydase and calcium channels. Chol-
era toxin ribosyiates Arg201 and thus impairs the hydrolysis
of the y-phosphate of GTP. Natural mutations at .this residue
(gsp) have an identical effect. Mutations at residues 232,
233, or 234 (numbering based on 394 residue form of Gsa)
have been shown either to inhibit activation of G« or its
GTPase activity. The glutamine at position 227 corresponds
to position 61 in ras p21.

Activating germline mutations of Gsa may well be lethal.
The activating mutations described in McCune-Albright syn-
drome (294, 295) show tissue mosaidsm, suggesting that
they have arisen after the first rounds of fertilized ovum
division. The Gsa-inactivating mutations noted in Albright's
hereditary osteodystrophy may be less deleterious in early
development. It is of interest that the activating mutations in
McCune-Albright syndrome have been restricted to Arg101,
whereas multiple distinct (and heritable) heterozygous, inac-
tivating mutations were uncovered in families with Albright's
hereditary osteodystrophy (292, 296, 297).

A subset of GH-producing pituitary tumors with high basal
adenyiate cydase and which tend to be small (298) have
been found to harbor a,-subunit (gsp) mutations (299-301).
The mutations involved predominantly Arg201 —» Cys or
Gin227 —» Arg or Leu. Similar mutations were described in a



212 FABID, SHI, AND ZOU

small proportion of thyroid tumors (164, 300, 302, 303).
Twenty five percent of follicular adenomas were found to
harbor gsp mutations (298, 302, 303). There may :be a pre-
dilection for these mutations in microfollicular adenomas.
The rate of these mutations was found in a recent study to
be less than 3% (304). Some of the mutations were novel,
e.g. Gin227 —»His. Mutations reported in papillary and follic-
ular carcinoma are uncommon (300, 302, 304); the substitu-
tions were also unusual (Arg201 —» ser, Gin227 —» Lys and
Gin227 —» His) (302). As anticipated, gsp mutations were more
common in tumors selected with high basal adenylate cyclase
activity (302).

A recent study (164) is worthy of separate consideration,
since it shows geographic variation (Germany vs. the United
States) in the rates of gsp and ras oncogene activation in 32
differentiated carcinomas and regional differences in the
activation of these two oncogenes in fragments of the same
tumors. The authors suggest that in samples from iodide-
deficient Germany gsp mutations are more common than ras
(in direct contrast to US samples) and that these mutations
are much more frequently identified in tumor section than
from whole tumors. Because thyroid tumors are monoclonal
(see above) some of these mutations are probably late events.
They may, nevertheless, modify tumor biological behavior
(164). The potential interaction between ras and gsp mutation
in thyroid tumor requires further clarification.

To what extent regional variation within the same tumor
accounts for variation in gsp mutation within iodide-suffi-
cient regions is unclear (298, 302-304) and, indeed, given
the number of samples studied, the differences between some
of the studies are not statistically significant. Our own ex-
perience with a detailed study of 32 thyroid rumors uncov-
ered no mutation at Arg201 or Gin227. We have, however,
found a mutation in exon 1 of Gsa (Lys34 —* Arg) in one
follicular adenoma. The mutation is placed in a functional
attenuator domain in Gsa. These experiments were predi-
cated on the notion that N-terminal domains of Gsa regulate
the rate of as activation by guanine nucleotides independent
of GTPase activity intrinsic to Gsa. It is likely a modulator
domain of GDP dissociation and GTP activation (305).
Whether this is a random somatic mutation or a normal
polymorphism, and whether it alters Gsa function and is
thus relevant to thyroid tumorigenesis, remains to be deter-
mined.

The potential oncogehic role of constitutive elevation of
cAMP is emphasized by transfection of A2 adenosine receptor
cDNA into cells or its targeting for expression in the thyroid
of transgenic mice under the influence of the thyroglobulin
promoter (306, 307). In the latter case, constant adenylal
cyclase activation is associated with thyroidal hyperplasia
and nodular goiter (307). On the other hand, Gi.,2, a Gu
subtype regulated by TSH (308), was found to be constitu-
tively increased in autonomous adenomas, but not in thyroid
cancers. The increase in Gi«2 was associated with decreased
cAMP levels in tissues tested (308).

EX. The TSH Receptor
The TSH receptor is a member of the seven-transmem-

brane segment G protein-associated receptors'. In common

with the LH/CG and FSH receptors, the TSH receptor hat
large extracellular domain with multiple glycosylation si *
(see Ref. 309 for review). Structure-function analysis of i
receptor has delineated some of the receptor functional u
mains (310, 311). The second cytoplasmic loop, COOt-
terminal domain of the third cytoplasmic part, and amir
terminal of the intracellular tail appear to be important'
transducing the signal initiated by agonist binding (309,;
The intracellular tail does not possess a consensus sequ
for protein kinase A substrate but does have several potential
kinase G substrate sequences (312). The TSH receptor third
intracellular loop has a distinctive motif found in nonreceptor
tyrosine kinases (312). Mutation of the tyrosine in this motif
did not, however, alter receptor activity (310). Three major
transcripts (4.5,1.7,1.3 Kb) were observed, probably result-
ing from alternate splicing of the mRNA. The two smaller
variants can potentially result in soluble TSH receptor forms
(313, 314). Two insertions (8aa at the NH2 and 50aa at the
COOH-end of the extracellular domain), are characteristic of
the TSH receptor (see Ref. 309). The former is essential for
TSH binding and receptor activation, whereas the biological
relevance of the latter is unclear.

It is now possible to verify, at the molecular level, earlier
observations of negative correlation between the degree of
differentiation of thyroid tumors and their ability to bind
[12SI]TSH and to stimulate adenylate cyclase (reviewed in Ref.
315). Benign thyroid tumors have a similar number of TSH
receptor transcripts to those found in normal thyroid (244,
245). With decreasing degrees of differentiation, fewer TSH
receptor transcripts are found. Indeed, a tolerable degree of
negative correlation between the clinical staging of the dis-
ease and receptor mRNA abundance exists (244, 245), with
some exceptions (244). With an increase in dedifferentiation,
however, expression of thyroperoxidase is lost (245, 316)
well before thyroglobulin transcripts (245). The loss of TSH
receptor gene expression appears to be a late event in thyroid
tumor dedifferentiation (245). We did not find a preferential
expression of receptor variants in thyroid tumors (244). The
relevance of a report of variation in the size of TSH receptor
gene determined by RFLP in follicular adenomas (317) is
unclear.

Increasing dedifferentiation of thyroid tumors and decre-
ment in TSH receptor mRNA was associated with an increase
in /3-adrenergic receptor transcript numbers, deduced by
quantitative PCR (318). It is unclear whether these mRNAs
are translated into functional /3-adrenergic receptors or
whether they have undergone mutations that will render
them constitutively activated. This area of investigation is
worthy of further exploration, as site-specific mutations of
the C-terminal part of the third intracellular domain of the
ais-adrenergic receptor was associated with constitutive ac-
tivation of PI hydrolysis (319) and neoplastic transformation.
These mutants have not, however, been observed naturally.

That spontaneous mutations in the third intracellular loop
of the TSH receptor are relevant to thyroid cell transforma-
tion has only been recently demonstrated. Thus Parma et d.
(319a) found mutations in three of' 11 autonomous (benign)
thyroid nodules. One of these mutations was found at posi-
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623 (Ala -* He) and the other two were found at position
619 (Asp —» Gly). The mutations were associated with con-
stitutively activated basal cydase activity. Since screening
has been linked to the third intracellular loop it is possible
that more complete screening would locate mutations in
other parts of the receptor (319b).

X. Tumor Suppressor Genes
The existence of tumor suppressor genes derived from

three lines of evidence: 1) somatic cell hybridization of tumor
with normal cells (320-323), 2) the realization of Knudson's
'two hit* postulate (324-326) in familial retinoblastoma
(324), and 3) arising from the retinoblastoma paradigm (327-
333), the correlation of loss of chromosomal segment heter-
ozygosity with inactivation of putative tumor suppressor
genes. The use of anonymous DNA markers has facilitated
the search for the tumor loss of heterozygosity (LOH), since
chromosomal loss extends to regions flanking suppressor
genes (334, 335). Tumor suppressor genes may also be iden-
tified by difference cloning or differential display of mRNA
(336, 337).

A. LOH in thyroid tumors
Studies have been undertaken to explore chromosomal

structural and numerical abnormalities in thyroid tumors.
The number of patients studied is, however, limited and has
incriminated a variety of chromosomal regions (125; and Ref.
338 for review). Many may be secondary to thyroid cell
transformation (338).

LOH involving chromosome 3p was implicated in and
specific to follicular carcinoma (338). 3p LOH was described
in small cell lung carcinoma (339), non-small cell lung car-
cinoma (340, 341), and breast and testicular tumors (342-
344). Renal cell carcinoma harbors a more proximal deletion
(3pl4-21) (345) than small cell lung carcinoma (p21-23). It
is intriguing that Matsuo et al. (346) reported LOH at llqlS
in approximately 14% of folUcular adenomas. It is implied
that some follicular adenomas will pursue a line of progres-
sion distinct from that in line to follicular carcinomas and
thus subvert the assumption (3,338) that follicular adenomas
are intermediate between normal follicular cells and follicular
carcinomas. Moreover, the chromosomal region implicated
(346) harbors the multiple endocrine neoplasia I gene (347-
349) as well as oncogenes and growth factor genes. The
findings of LOH in thyroid tumors, therefore, bear confir-
mation in larger series of patients.

B. Retinoblastoma (Rb) gene
. The Rfa gene spans 180 Kb and 27 exons and maps to
13ql4 (326, 350, 351). It encodes a 110-kDa nuclear phos-
phoprotein (350, 352). Rfa binds the viral oncoproteins SV40
large T antigen, human adenovirus EA1, and papillovirus E7
(353-357). This binding inactivates Rb's growth suppressing
function (358). All the viral oncoproteins bind to an under-
phosphorylated form of Rb (359).

The Rb protein switches between a hyperphosphorylated

and relatively underphosphorylated state in a cell cycle-
specific manner (360-364). By binding them, pRb regulates
the actions of the transcription factor E2F (365-370), and
cyclins Dt and D3 (371, 372) which play critical' roles in
promoting cell cycle progression and parallel the already
defined role of p!07 (370-375). Seemingly, these factors
bind in the same pRb pocket as do oncoproteins. Cydin D2,
which accumulates in a cell cyde-dependent manner, is
instrumental (in association with cd kinase 2) in the hyper-
phosphorylation of pRB and thus its release of cyclin Dj and
D3 (372). This schema explains the negative regulation of
myc expression by Rb/E2F complex and the observation that
myc can overcome the ability of Rb but not p53 in affecting
the Gi phase arrest (376, 377). It also raises the possibility
that mutations in or amplification of E2F or of specific cyclins
may result in a phenotype similar to a loss of Rb (370, 371).

A subtle role of Rb in growth-inhibiting pathways is
compatible with normal embryogenesis in familial retino-
blastoma, where a defective gene is passed on in the gennline
and with the normal development of mice in which one
allele has been inactivated (378-380). Mouse embryos in
which both alleles have been disabled, however, fail to reach
term and show abnormalities in neural and hematopoietic
development (378-381).

Somatic Rb gene inactivation has now been implicated in
a number of tumors (382), aside from retinoblastoma and
sarcomas which are seen in relation to gennline. heterozy-
gosity at the Rb locus (383, 384). The range of tumors
involved is, however, likely to be more restricted than for
mutations in p53. These include cervical carcinoma [whether
or not they are positive for human papilloma virus sequences
(385)], small cell and non-small cell lung carcinomas, bladder,
and breast carcinomas (386-394). Some of these tumors also
harbor p53 mutations (385).

The mechanisms that inactivate the Rb gene indude dele-
tions, insertions, or point mutations and have been uncov-
ered in retinoblastomas, osteosarcoma, and soft tissue sar-
coma which develop later in life in patients with retinoblas-
toma (350, 395, 396) as well as in a variety of tumors and
tumor cell lines (382). Mutations that affect serine and thre-
onine phosphorylation of Rb protein or its ability to bind
oncoproteins have been mapped to two domains: codons
393-572 and codons 646-772 spread over exons 13-22 (397-
399). The frequent deletions of exons 13-17 in retinoblas-
toma suggest that they may contain recombinational "hot
spots* (351). Exonic deletions of the Rb gene are usually
accomplished by mutation at splice junction resulting in in-
frame deletions (382, 385). Genomic DNA from such tumors
may not exhibit obvious abnormalities (389, 400). These
mutations result in lack of gene expression or a defective Rb
protein (382, 401).

The development of thyroid tumors in transgenic mice in
which SV40 T antigen was targeted to the thyroid gland
under the influence of thyroglobulin promotor (402) led us
to study Rb gene mutations in thyroid tumors. Mutant Rb
alleles were found in 55% of thyroid carcinomas but in none
of the benign rumors. The rates of Rb mutations were similar
in anaplastic and differentiated thyroid carcinoma. The mu-
tations were either attributable to abnormal Rb mRNA splic-
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FIG. 6. Functional domains of the p53
protein. The activation domain of p53
has been mapped to the NHj-«nd of the
protein (residues 20-42). The heat shock
protein (hsp) 70 binding domain is fur-
ther upstream and overlaps the activa-
tion domain. The oligoinerization do-
main (residues 344-393) is at the COOH
end of pS3, whereas the sequence neces-
sary for nuclear localization is mapped
to residues 316-325. Domains II-IV rep-
resent areas that are highly conserved
among species. Some 98% of all p53 mu-
tations described in tumors occur in
these four domains (also see Fig. 7). cdc2
Represents serine 315 phosphory lated by
p34e<ic2 kinase; CK2, serine 392 phos-
phorylated by casein kinase 2. [Adapted
with permission from B. Vogelstein and
K. W. Kinzler Cell 70:523-526,1992
(162). ©1992 by Cell Press.)
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ing, C-terminal deletion, or point mutations (403). The most
common mutations were deletions of exon 21, resulting in
the fusion of exons 20-22. The deletion was, however, not
present in genomic Rb gene sequences indicating that the
deletion was the result of abnormal Rb mRNA splicing. One
papillary carcinoma sample contained an in-frame deletion
of most of exons 19 and 21 as well as the entire exon 20.
The same sample also contained a deletion of exon 21.
Twelve percent of malignant tumors harbored both Rb and
p53 mutations. p53 And Rb double mutations appear to be
more frequent in advanced disease stage. Thus Rb may be
an important factor in thyroid cell malignant transformation,
and possibly in tumor progression.

C.p33
The normal gene for p53 encodes a 393>-residue long

nuclear phosphoprotein mapping to chromosome 17pl3 and
spanning 11 exons. Exon 1 does not encode protein se-
quences (404). Cross-species comparison reveals five highly
conserved domains, four, of which fall within exons 5-8
(404): codons 117-142 (domain II); codons 171-181 (domain
III); codons 234-258 (domain IV), and codons 270-286 (do-
main V). The C-terminal region of p53 was predicted to form
an amphipathic helix-like structure (405, 406). p53 Oligo-

. merizes through its C terminus to form tetramers (407). Its
NH2-terrranus regulates the expression of downstream genes,
which negatively control growth (408-412). The heat shock
protein (hsp) 70 binding region (413) in the NHz-terminus
overlaps the activation domain, hsp 70 May act as a chap-
erone that facilitates oligomerization. The major nuclear lo-
calization signals are mapped to codons 316-325 (414) and
include the target of serine phosphorylation by p34 cd kinase
2 (415). As most mutations impair the ability of p53 to bind
DNA and/or result in dysfunction of the NH2-terminus
activation domains, they must affect the conformation of the
entire protein (162, 416-418) (Fig. 6). Wild type p53, but
none of the mutants tested, transactivates the putative pro-
motor sequences (408). p53 Inhibits transcription-from min-
imal promoters or it binds to TATA-binding protein, thus

inhibiting transcription indirectly (418-420).
p53 Appears to regulate growth-inhibiting signals at the

Gl-S transition of the cell cycle and monitor the genetic
integrity at cell division in the same way as the rad 9 gene in
yeast (421). The effects of p53 are apparent only in stressed
cells (162,163, 422). Normal cells exposed to radiation (156),
UV light, or UV-mimetic drugs (423) exhibit an increase in
p53 expression and are arrested in Gj until repair is effected
In contrast, cells harboring mutant p53 genes continue to
divide and either die or accumulate genetic defects leading
to tumorigenesis (157). In certain tumor systems, the prior
activation of myc cooperates with ras in neoplastic transfor-
mation in the absence of p53 mutations, whereas in the
absence of an activated gene there is a strong selection for
p53 mutation by myc resulting in hyperplasia and not neo-
plasia (151, 424) and stresses the role of p53 in apoptosis
(151).

p53 Was initially found through its association with SV40
large T antigen oncoprotein. Considered (425) an oncogene
which cooperates, like myc, with ras in transforming cells
(426, 427), it was later shown to be a tumor suppressor (147,
428). The p53 genes employed in those early experiments
were inactivated by mutations (429). 'Like the Rb protein,
p53 binds SV40 large T antigen, the E6 proteins of human
papilloma virus, and EA1 of adenoviruses (425, 430-433).
These oncogenic viruses sequester the p53 protein by binding
it with p53 protein.

Germline p53 mutations are found in Li-Fraumeni syn-
drome (421), a familial cancer syndrome in which relative
develop diverse malignancies including breast carcinoma,
sarcomas, and brain tumors (434, 435). Germline mutations
have now been found in sporadic patients with cancers

' comprising Li-Fraumeni syndrome, specifically those with
second tumors (436-439) and in patients with familial breast
cancer (440, 441). p53 Mutations in Li-Fraumerti syndrome
are widely distributed among the p53 genes between amino
acid residues 72 and 325 (418, 421, 442, 443).

Somatic p53 mutations have been described in a wide
variety of human cancers (428, 444-451). Some 98% of these
mutations are found in that part of the molecule encoded by
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FlO. 7. Distribution of p53 mutations described in malignant thyroid tumors and in thyroid tumor lines. (A, well differentiated tumors: *,
anapiastic tumors; •, anapiastic ceil lines; O, well differentiated cell lines). II-FV represent domains highly conserved among species studied.
Domain II includes residues 117-142; domain III, residues 171-181; domain IV, residues 234-258; and domain V, 270-286, the residue* are
numbered according to Soussi et aL (404). Single letter residue abbreviations are as follows: A, Ala; C, Cys, D, Asp; E, Glu; F, Phe; G, Gly; H, His;
I, He; K, Lys; L, leu; M, Met; N, Asn; P, Pro; Q, Glu; R, Arg; S, Ser, T, Thr; V, Val; W, TRP and Y, Try. Some 98% of all the mutations described
in a variety of malignant tumors have been mapped to these four domains. By contrast, only 65% of the mutations described ia malignant thyroid
tumors or tumor lines map to these domains. Eleven of 13 mutations described in anapiastic tumors do map to domain* III, IV, and V. Position
273 in homology domain V and 248 in domain IV appear to be mutation hot spots for anapiastic thyroid tumors and'may be involved in tumor
progression. It is highly unlikely that mutations outside the evolutionary conserved regions found in well differentiated tumors are rare
polymorphisms.

exons 5-8 (428, 444). The missense mutations are so numer-
ous that some are bound to represent previously undetected
rare polymorphisms or may not affect p53 function (452-
454). Mutated p53 proteins may bind DNA abnormally (408,
415), may exhibit NH2-termini (e.g. mutants at codons 143,
175, 248, and 273) which are unable to activate reporter
genes (408), may bind tightly to hsp 70 (mutants at codons
135, 175 but not 273) and to each other forming stable
complexes and prolonging the mutant's half-life (429, 455),
or may fail to bind to conformation-dependent antibodies
(456) (mutants at codon 135, 175) or to suppress growth or
transformation in transfection assays (162, 428). Three co-
dons, 175, 248, and 273, appear to be particularly targeted
for mutations (428).

When mutations are examined by tumor type, some dif-
ferences emerge with respect to the position of the hot spots,
frequency of mutation involving transitions compared to
transversion (444). This exercise has yielded some site-spe-
cific information regarding the mutagens involved. Thus
hepatocellular carcinoma in areas with high exposure to
aflatoxin Bl ingestion and hepatitis B virus is associated
predominantly with codon 249 mutation (457,458). Likewise
in human squamous cell carcinoma of the skin, p53 was
mutated exclusively at pvrimidines, with frequent CC —» TT
double base changes, pathognomonic of UV light effect
(459).

Loss of one allele with mutations in the remaining allele
is characteristic of p53 inactivation (428). Unlike Rb, how-
ever, mutation at one p53 allele may also contribute to
human carcinogenesis through negative dominant effects.
Indeed, some mutant p53 proteins found in human tumors

can cooperate with the ras oncogene to transform primary
cells, suggesting that they can inactivate endogenous wild-
type p53 proteins (428). p53 Mutants differ in dominant
negative effect, e.g. Mutants at codon 175 are severalfold
more efficient than codon 273 mutants in cooperating with
ras (428, 455). Wild-type p53 may also be bound and se-
questered by E6 oncoprotein in human cervical carcinoma or
the product of the MDM2 gene (162) found to be amplified
in a high proportion of human sarcomas (459-461).

Mutations of the p53 gene in human neoplasia are gener-
ally regarded as late events (9, 462). There is, however,
mounting evidence to show that it can also occur early in the
neoplastic sequence in some malignancies (423, 446, 463.
464).

Mutations in the p53 gene appear to be relevant to the
development and progression of malignant thyroid tumor.
Initially, no mutations of p53 were detected in 129 thyroid
tumor samples studied by immunohistochemistry or 20 tu-
mor samples (465) by genomic DNA sequencing of amplified
exons 5, 7, and 8. Both a cell line established from recurrent
follicular carcinoma and the original tumor harbored a homo-
zygous transitional (CGT —» CAT) mutation at codon 273
(465). Concentration of mutations in exon 6 and/or gross
contamination of tumor with nontumorous tissue has been
invoked to account for the negative results in that study
(416,466). ,

Three other studies have documented p53 mutations in
thyroid carcinoma (416,466,467). In two the mutations were
predominantly or exclusively found in anapiastic tumors
(466, 467), whereas in the third mutations were found in
well differentiated malignant thyroid rumors (416). The geo1-
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TABLE 2. p53 Mutations in thyroid cancer

Type
1. AC

2. PC
3. FC
4. PC
5. PC
6. PC

7. - PC
8. PC
9. PC

10. PC
11. PC
12. PC

Stage
IV

IV
II
II
IT
II

I
II
I
I
I
II

Age
46

70
48
46
45
24

23
25 •
32
36
26
27

Sex
M

F
F
M
M
F

F
F
F
F
F
F

Exon
5

8
3
7
7
6
8
8
7
6
8
7
5

Codon
159
177
268
292
256
250
212
282
283
231
222
268
237
161

Base change
GCC-.CCG
CCC -. CC
AAC-»AGC
AAA-»AGA
ACA -» ACG
CCC --CTC
TTT— »TTTT
CGG — TGG
CGC -» CGT
ACC-*GCC
GAG — GAA
AAC — CAC
ATG -. ATA
GCC —BCC

Amino acid change
Ala -» Pro ^"^
1 bp deletion (frame shift)

' Asn-»Ser
Lys-»Arg
No
Pro-* Leu
1 bp addition (frame shift)
Arg-»Trp
No
Thr-»Ala
No
Asn-»His
Met -.lie
Ala->Thr

Review of histology of samples showed that samples 2, 7, and 8 had evidence of solid foci suggestive of dedifferentiation. AC, Anaplaitic
carcinoma; PC, papillary carcinoma; FC, follicular carcinoma.

[Reproduced with permission from Ref. 416. ©The Endocrine Society.]

graphic variation in the apparent role of p53 as a factor in
tumor progression in the United States and Japan, and in
tumor development in Saudi Arabia, is intriguing and may
be related to genetic or environmental factors. Certainly, all
three studies were reported from apparently iodide-sufficient
areas. Scrutiny of the locations and nature of the mutations
involved, most of which are transitional in nature, does not
provide clues to potential environmental mutagens. In the
studies by Ito et al. (467) and Zou et al. (416), the mutations
appear to be relatively scattered in the p53 gene (Fig. 7).
That all five p53 mutations detected among six anaplastic

20 r-

carcinoma samples showed a CGT —»• CAT (Arg -» His)
transition at codon 273 in one study (466) is intriguing.
Ninety percent of the point mutations in the anaplastic
thyroid tumors and 50% in the well differentiated carcinoma
(416) were G:C-»A:T transitions. Positions 273 (466, 467)
and 248 (467) (cpG dinudeotides) appear to be mutational
hot spots in anaplastic thyroid carcinoma. Methylated cyto-
sines occur exclusively at CpG dinucleotides and are a major
site of spontaneous and probably enzyme-catalyzed deatru-
nation driven mutations (468, 469) of the p53 gene (468).
The possibility that these mutational hot spots are preferen-
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Differentiated Thyroid Carcinoma

FIG. 8. The distribution of nm23 transcripts in thyroid tumdrs. There was no difference between benign nodular thyroid tissue samples (goiter),
stages I through III of thyroid carcinoma. Samples from patients with anaplastic tumors and those at stage IV were significantly higher. These
results suggest no correlation between the tumors' metastatic potential and nm23 transcript abundance. As close correspondence between transcript
abundance and nm23 protein expression was described (507), the results cannot be explained away by variation in message stability. Thyroid
tumors were staged on the basis of the TNM international classification (see Ref. 508). AC, Anaplastic carcinoma.
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TABLE 3. Oncogene and tumor suppressor genes incriminated in thyroid tumors

Oncogene/antioncogene

Ras

PTC/ret TPC

Trk

Met

c-myc

c-fos

gsp

p53

RB

Tumor type

Adenomas
Foilicular carcinoma
Adenomas
Foilicular carcinoma
Anaplastic carcinoma
Thyroid tumors'

Papillary carcinoma

Papillary carcinoma
Multinodular Goiters

Follicuiar carcinoma
Papillary carcinoma
Poorly differentiated carcinoma

Malignant tumor*
Papiiiary carcinoma
Adenoma

Malignant tumor*
Adenoma

Differentiated carcinoma0

Adenoma
Multinodular Goiter

Differentiated carcinoma'
Anaplastic carcinoma

Differentiated carcinoma'
Anaplastic carcinoma

Frequency
(%)

80
50
17
10
60
60

25

10
5

22
74
75

57
30
70

60
90

10
3-25
5

25
86 .

54.5
60

Lesion

{H-ras 61) Point mutation
(H-ras 61) Point mutation
(H-ras 61) Point mutation

, (H-ras 61) Point mutation
Point mutation
(K-ras) Point mutation

Rearrangement

Rearrangement

Increased expression

Increased expression

Increased expression

Point mutation
Point mutation
Point mutation

Point mutation or
Deletion or insertion

Deletion or
Mutation

Environment

Iodide deficient
Iodide deficient ~~ '••
Iodide sufficient
Iodide sufficient

?
Radiation

7

1

7

7

Iodide deficient

7

7
'* Thyroid tumors: papillary, follicular, anaplastic, and adenoma.
4 Malignant tumors: papillary, foliicular, and anaplastic carcinoma.
* Differentiated carcinoma: papillary and follicular carcinoma.

ter),
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daily used .in different races or geographic locations requires
further exploration (466, 467).

Eight of the 25 mutations including two in anaplastic
thyroid carcinomas were outside the homology domains II-
V (Fig. 7). As the mutations in well differentiated carcinomas
do not coincide with any of the three polymorphisms de-
scribed (.453, 454, 470, 471) nor with nondeleterious muta-
tion at'codon 181 (452) and are restricted to malignant rumors
(416), it is likely that they are causally related to malignant
thyroid cell transformation. Their- deleterious nature can,
however, be definitively assessed by transfectioh assays.

Interestingly, all 20 mutations reported from tumor tissue
involved only one p53 allele and cannot be attributed to
contamination with normal thyroid tissues. By contrast, three
of four thyroid carcinoma cell lines (465,466) showed homo-
zygous inactivation of p53, suggesting that this attribute may
confer on thyroid epithelial cells the ability to grow in culture.
Our data (416) suggest that the exon 5-8 domains of p53 are
mutable in malignant thyroid tissue as well as the subject of
frame shifts (Table 2). the reasons for these mutation pres-
sures would be interesting to explore.

XI. Progression to Metastatic Potential

Two general and overlapping mechanisms may lead to the
acquisition by cancer cells of metastatic potential: 1) malig-
nant cells with a growth advantage in the primary lesions
are more likely to metastasize (472); 2) cancer cells that
metastastze acquire additional properties as a result of acti-
vation or inactivation of specific genes (473).

With stepwise accumulation of cellular events, malignant
cells elaborate their own growth factors, become resistant to
cytokines and growth factors that are normally inhibitory to
normal cell growth, and may actually grow under the influ-
ence of these inhibitory factors. Primary tumors are thus
clonally dominated by subpopulations of malignant cells
with metastatic competence (474, 475). Since these cells
frequently aberrantly manufacture their own growth factors
and cytokines they develop a private autocrine loop that
allows for multigrowth factor independence (476-478). Early
in this process, the cells become growth factor competent by
elaborating ectopically (479, 480) basic FGF (bFGF), NGF,
PDGF, and IGF-1 (481, 482). Further malignant progression
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tumor and perhaps determine tumor behavior.

in some epithelial cancers is associated with their transition
from growth inhibition, e.g. by TGF0 and IL-6 to growth
stimulation by these factors (483-485). Sustenance of these
highly malignant (and metastatic) cells by IL-6 has now been
demonstrated in a variety of epithelial cancers (486-491).
The relationship of the discrete multiple genetic events lead-
ing to malignancy to the increasing growth independence
and subversion of inhibitory to stimulatory signals remains
to be elucidated, as is the notion that resistance to one
cytokine selects for resistance to other related or unrelated
cytokines (472).

Given that beyond the size of 2-3 mm, solid tumors require
their own blood supply, neurovascularization is a necessity
for tumor success. These vessels also provide a means
whereby cells with a high growth potential metastasize.

• Angiogenesis-promoting proteins synthesized by tumors in-
clude bFGF, EGF, vascular-endothelial growth factor, hepa-
tocyte growth factor, pleitrophin, and PDGF (285, 492, 493).
The degree of angiogenesis determines tumor progress and
its outcome (494, 495).

XII. nm23
A candidate for a specific gene product which influences

metastatic potential of tumors is nm23 (473,496). Nm23 was
identified on the basis of its- reduced steady state mRNA

levels in several tumor cell lines with high metastatic poten-
tial (497). The gene (NME1) (498) was later, found to be
highly homologous with Drosophila abnormal wing disc
(awd) developmental gene (499) and with the nudeoside
diphosphate (NDP) kinases (500-502). A second gene
(nm23-H2) which is 88% identical to nm23-Hl has been
described (503). The two isoforms of nm23, which map to
17q 21.3 (498, 504), correspond to A and B chains of NDP
kinase (504,505) and are assembled in variable combinations
into hexamers (504).

The abundance of nm23 mRNA and protein showed a
negative correlation with metastatic potential in experimental
melanomas (497) and human breast cancer (506, 507). Fur-
thermore, transfection of the nm23 gene into melanoma cells
reduced their metastatic potential (509). Deletions or muta-
tions of nm23 were found to correlate with metastatic be-
havior of tumors (510-512). The correlation of nm23 tran-
script number with metastases was, however, not noted in
colonic cancer (513), neuroblastoma (514), and in some solid
tumors (515).

We have studied the abundance of nm23 in 49 thyroid
tumors with a wide range of histology. Our results indicate
that nm23 transcript abundance did not negatively correlate
with metastatic potential or with clinical staging of the dis-
ease in general. The highest level of nm23 transcripts was
found in anaplastic carcinoma (Fig. 8). We have also used
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single strand conformationai polymorphism to explore the
possibility that the nm23 gene may harbor somatic mutations
and/or deletions in thyroid carcinoma. None were found.
Lack of mutation was further confirmed by sequencing nm23
cDNA from four tumors, two with normal level expression,
and two with high expression (516).

The nm23 data should be interpreted in light of the identity
of two nm23 gene products with the NDP kinase A and B
chains (504, 505). The assembly of the two chains with
different sets of intra- and intermolecular disulfide bonds
and/or ratios of A and B chains could yield a number of
isotypes. It appears that the A chain decreases much more
than the B chain in metastatic tumors (507) and may thus
preclude the formation of specific complexes in which its
participation is critical. A more extreme example would be
loss of copies of NME1 and NME2 by loss of heterozygosity.
It, of course, remains to be seen as to which NDP kinase
complex is actually involved in limiting metastases. This
proposed mechanism would not, however, account for the
increase in nm23 with dedifferentiation in some rumors.

NDP kinases may be responsible for high GTP concentra-
tions in the proximity of G proteins (517). The suggestion
that NDP kinase activates the small GTP binding protein,
ADP ribosylation factor (518), which is necessary for non-
dathrin coatemers, could not be supported (519, 520). Ap-
parently Golgi membranes can specifically catalyze the ex-
change onto ADP ribosylation factor (519, 520). The mech-
anism whereby specific or all NDP kinases inhibit metastatic
behavior is unclear, but is likely due to effects downstream
of these gene products. That NDP kinase suppresses differ-
entiation of leukemic cells in the mouse (521) suggested a
role for nm23 in proliferation and differentiation. The recent
recognition that nm23-H2 (but not nm23-Hl) is a transcrip-
tion factor for myc is intriguing (522).

. Perspective
One aim of cancer research is to understand the etiologjcal

basis for carcinogenesis, with the long term objective of
reducing cancer incidence, Epidemiologicai studies may in-
criminate environmental factors as well as genetic predispo-
sition in the etiology of cancer. The recognition that cancer
is a multistep process and the rapid elucidation of these steps
may allow targeted prophylaxis and therapy. The picture in
thyroid cancer is emerging at a modest pace compared to
other cancers (Table 3). We have, thus drawn from experi-
ences with other cancers in this respect.

A number of cellular steps are necessary for thyroid cell
transformation. These result in the delivery of constitutive
and/or aberrant growth signals and loss of growth-inhibiting
signals, thus disrupting the cell cycle. Growth signals can be
mediated by overseoretion of growth factors, constitutive
action of growth factor receptors, or their oncogene surro-
gates, aberrant expression of such receptors, or the unregu-
lated action of -transducer systems downstream from the
receptors. Most of these cellular events act in a dominant
manner. One or more genes involved in suppression of cell

• growth may have to be inactivated for malignant transfor-
mation or tumor progression to take place. The effects of

these genes are usually recessive but there are variations on
this theme. Later, with tumor progression the transformed
cells may subvert the action of growth-inhibiting cytokines
and use them for growth. It is likely that early competence
events lead to thyroid cell donal growth. These cells -then
become the targets for the random accumulation of supple-
mentary events, induding inactivation of tumor suppressor
genes which would lead to malignant transformation. It can
be inferred that such malignant cells are programmed to alter
expression of surface molecules induding adhesion proteins
as well as to induce proliferation of supporting connective
tissue and capillaries which would dictate the biological
behavior of these tumors. Figure 9 synthesizes both the
defined and putative cellular genetic events involved in
thyroid carcinogenesis.

T o see a world in a grain of sand
and a heaven in a wild flower

hold infinity in the palm of your hand
and eternity in an hour.

William Blake, Auguries of Innocence
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